Volume 18, Issue 1 (3-2023)                   J. Mon. Ec. 2023, 18(1): 95-110 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Qezelbash M, Hamooni A, Tajdini S, Arghavan D. Performance of the Iranian Currency Exchange Using Dynamic Conditional Correlation. J. Mon. Ec. 2023; 18 (1) : 5
URL: http://jme.mbri.ac.ir/article-1-620-en.html
1- Financial Engineering, Allameh Tabataba’i University, Tehran, Iran
2- Faculty of Economics, University of Tehran, Tehran, Iran.
3- Faculty of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran
Abstract:   (368 Views)
The aim of this study was to assess the performance of the Iranian currency exchange market by analyzing the dynamic conditional correlation (DCC) between the Iranian currency exchange rate and the free market exchange rate of the US dollar in Iran. This analysis was conducted for both the same day and with a one-day lag, spanning from June 20 to October 30, 2022. The results of the study indicate that the DCC for concurrent days (denoted as dcc0) stood at 48%. Meanwhile, the DCC for the Iranian currency exchange rate with a one-day delay compared to the free market US dollar exchange rate in Iran (referred to as dcc+1) was 17%, and the DCC for the free market US dollar exchange rate with a one-day lag behind the Iranian currency exchange rate (referred to as dcc-1) was 35%.
Article number: 5
Full-Text [PDF 925 kb]   (253 Downloads)    
Type of Study: Original Research - Case Study | Subject: Economics
Received: 25 Jan 2023 | Accepted: 26 Aug 2023 | Published: 29 Apr 2024

References
1. Abdelaal, M. A. (2011). Modeling and Forecasting Time Varying Stock Return Volatility in the Egyptian Stock Market. International Research Journal of Finance and Economics, 78, 96-113.
2. Andreea - Cristina, P., & Stelian, S. (2017). Empirical Results of Modeling EUR/RON Exchange Rate using ARCH, GARCH, EGARCH, TARCH and PARCH models. Romanian Statistical Review, 65(1), 57-72.
3. Brownlees, C, & Engle, R (2017), SRISK: A Conditional Capital Shortfall Measure of Systemic Risk, The Review of Financial Studies, Volume 30, Issue 1, January 2017, Pages 48-79, [DOI:10.1093/rfs/hhw060]
4. Cecchetti, S.G., & Schoenholtz, K.L. (2018). Monetary Policy and the Behavior of Banks: Lessons from the Financial Crisis. Journal of Economic Perspectives, 32(4), 81-106.
5. Coffie, W., Tackie, G., Bedi, I., & Otchere, F. (2017). Alternative Models for the Conditional Heteroscedasticity and the Predictive Accuracy of Variance Models-Empirical Evidence from East and North Africa Stock Markets. Journal of Accounting and Finance, 17, 100-116.
6. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J., (2009), Modeling wine preferences by data mining from physicochemical properties, Decision Support Systems, Volume ,47 Issue ,4 Pages547-553, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2009.05.016 [DOI:10.1016/j.dss.2009.05.016.]
7. De Nard, G., Ledoit, O., & Wolf, M. (2021). Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly (December 1, 2018). Journal of Financial Econometrics and University of Zurich, Department of Economics, Working Paper No. 290, Revised version, Available at SSRN: https://ssrn.com/abstract=3194492 [DOI:10.2139/ssrn.3194492]
8. Dritsaki, C. (2017). An Empirical Evaluation in GARCH Volatility Modeling: Evidence from the Stockholm Stock Exchange. Journal of Mathematical Finance, 07(02), 366-390. [DOI:10.4236/jmf.2017.72020]
9. Engle, R. (2002). Dynamic Conditional Correlation. Journal of Business & Economic Statistics, 20(3), 339-350. [DOI:10.1198/073500102288618487]
10. Engle, R., & Sheppard, K. (2001). Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH. [DOI:10.3386/w8554]
11. Engle, R. F., Giglio, S., Lee, H., Kelly, B. T. & Stroebel, J. (2019). Hedging Climate Change News . Yale ICF Working Paper No. 2019-02, Available at SSRN: https://doi.org/10.2139/ssrn.3422236 https://doi.org/10.2139/ssrn.3317570 [DOI:10.3386/w25734]
12. https://ssrn.com/abstract=3317570 or http://dx.doi.org/10.2139/ssrn.3317570 [DOI:10.2139/ssrn.3317570]
13. Gali, J. (2018). The role of fiscal and monetary policies in the stabilization of the US economy. Journal of Monetary Economics, 96, 1-14.
14. Geczy, C., Stambaugh, R., & Levin, D., (2005), Investing in Socially Responsible Mutual Funds. Available at SSRN:
15. https://ssrn.com/abstract=416380 or http://dx.doi.org/10.2139/ssrn.416380 [DOI:10.2139/ssrn.416380]
16. Guo, Z.-Y. (2017a). Models with Short-Term Variations and Long-Term Dynamics in Risk Management of Commodity Derivatives. EconStor Preprints from ZBW - Leibniz Information Centre for Economics. [DOI:10.2139/ssrn.3012706]
17. Guo, Z.-Y. (2017b). GARCH Models with Fat-Tailed Distributions and the Hong Kong Stock Market Returns. International Journal of Business and Management, 12(9), 28. [DOI:10.5539/ijbm.v12n9p28]
18. Harrison H., & Marcin K. (2009). The price of sin: The effects of social norms on markets, Journal of Financial Economics, Volume 93, Issue 1, Pages 15-36, ISSN 0304-405X, https://doi.org/10.1016/j.jfineco.2008.09.001 [DOI:10.1016/j.jfineco.2008.09.001.]
19. Hussain, M., Zebende, G. F., Bashir, U., & Donghong, D. (2017). Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach. Physica A: Statistical Mechanics and Its Applications, 465, 338-346. [DOI:10.1016/j.physa.2016.08.056]
20. Intaz, A., Subhrabaran, D., & Niranjan, R. (2016). Stock Market Volatility, Firm Size and Returns: A Study of Automobile Sector of National Stock Exchange in India. International Journal of Innovative Research and Development, 5(4), 272-281.
21. Kenourgios, D., Samitas, A., & Paltalidis, N. (2011). Financial Crises and Stock Market Contagion in a Multivariate Time-Varying Asymmetric Framework. Journal of International Financial Markets, Institutions and Money. 21. 92-106. 10.1016/j.intfin.2010.08.005. [DOI:10.1016/j.intfin.2010.08.005]
22. Laurent, S., Rombouts, J. V. K., & Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934-955. [DOI:10.1002/jae.1248]
23. Liu, H.-C., & Hung, J.-C. (2010). Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models. Expert Systems with Applications, 37(7), 4928-4934. [DOI:10.1016/j.eswa.2009.12.022]
24. Mishkin, F.S. (2020). The impact of monetary policy on asset prices. The Manchester School, 88(1), 1-35.
25. Muntazir, H., Gilney F.Z., Usman B., & Ding D. (2017). Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach, Physica A: Statistical Mechanics and its Applications, Volume 465, Pages 338-346, ISSN 0378-4371, https://doi.org/10.1016/j.physa.2016.08.056 [DOI:10.1016/j.physa.2016.08.056.]
26. Opler T.C., & Sokobin, J. (2005). Does Coordinated Institutional Activism Work? An Analysis of the Activities of the Council of Institutional Investors, Research in Financial Economics 9505, Ohio State University.
27. Pelletier, D. (2006). Regime switching for dynamic correlations, Journal of Econometrics, vol. 131, issue 1-2, 445-473 [DOI:10.1016/j.jeconom.2005.01.013]
28. Rachel, L., & Smith, T.M. (2018). Monetary policy and long-term trends. Journal of Monetary Economics, 97, 20-36.
29. Robiyanto, R. (2018a). Indonesian Stock Market's Dynamic Integration with Asian Stock Markets and World Stock Markets. Jurnal Pengurusan, 52, 181-192. [DOI:10.17576/pengurusan-2018-52-15]
30. Robiyanto, R. (2018b). The Dynamic Correlation between ASEAN-5 Stock Markets and World Oil Prices. Jurnal Keuangan Dan Perbankan, 22(2). [DOI:10.26905/jkdp.v22i2.1688]
31. Sadorsky, P. (2014). Modeling volatility and conditional correlations between socially responsible investments, gold and oil. Economic Modelling, 38, 609-618. [DOI:10.1016/j.econmod.2014.02.013]
32. Sarkar, S., & Banerjee, A. (2006). Modeling daily volatility of the Indian stock market using intra-day data.
33. Syllignakis, M., & Kouretas, G. (2011). Dynamic correlation analysis of financial contagion: Evidence from the Central and Eastern European markets, International Review of Economics & Finance, 2011, vol. 20, issue 4, 717-732 [DOI:10.1016/j.iref.2011.01.006]
34. Tajdini, S., Mehrara, M. & Tehrani, R. (2019). Double-sided balanced conditional Sharpe ratio, Cogent Economics & Finance, 7:1, 1630931, DOI:10.1080/23322039.2019.1630931 [DOI:10.1080/23322039.2019.1630931]
35. Tajdini, S., Mehrara, M. & Tehrani, R. (2021). Hybrid Balanced Justified Treynor ratio, Managerial Finance, Vol. 47 No. 1, pp. 86-97. [DOI:10.1108/MF-03-2019-0118]
36. Tsukuda, Y., Shimada, J., & Miyakoshi, T. (2017). Bond market integration in East Asia: Multivariate GARCH with dynamic conditional correlations approach. International Review of Economics & Finance, 51, 193-213. [DOI:10.1016/j.iref.2017.05.013]
37. Van Os, B., Van Dijk, Dick J.C. (2021). Pooling Dynamic Conditional Correlation Models. Tinbergen Institute Discussion Paper 2021-083/IV, Available at SSRN: https://ssrn.com/abstract=3929416 or http://dx.doi.org/10.2139/ssrn.3929416 [DOI:10.2139/ssrn.3929416]
38. Yoldas, E. (2018). The effect of unconventional monetary policies on international stock markets. Journal of International Money and Finance, 88, 31-49.
39. Yoshihiko ,T., Junji, S., & Tatsuyoshi, M. (2017). Bond market integration in East Asia: Multivariate GARCH with dynamic conditional correlations approach, International Review of Economics & Finance, Volume 51, Pages 193-213: ISSN 1059-, 0560. https://doi.org/10.1016/j.iref.2017.05.013 [DOI:10.1016/j.iref.2017.05.013.]
40. Zhang, X. (2006). Modeling and simulation of value at risk in the finance Market area. Louisiana Tech University.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Journal of Money And Economy

Designed & Developed by : Yektaweb