Volume 18, Issue 4 (12-2023)                   J. Mon. Ec. 2023, 18(4): 497-510 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mojab R. Comparing the Prediction Power of Logit Regression Model and LightGBM Algorithm in Credit Card Fraud Detection. J. Mon. Ec. 2023; 18 (4) : 4
URL: http://jme.mbri.ac.ir/article-1-673-en.html
Monetary and Banking Research Institute
Abstract:   (174 Views)

Relying on the Area Under the Curve (AUC) measure, we compare the performance of the Logit regression model and the LightGBM algorithm. Despite these methods being common in the literature, our study emphasizes the role of statistical inference to evaluate and compare the results comprehensively. We use the training set of the Vesta (2018) dataset, provided by Vesta—a global fraud prevention company headquartered in the United States specializing in payment solutions and risk management. Originally released as part of a Kaggle competition focused on credit card fraud detection, this dataset comprises diverse transaction records, representing a rich source for exploring advanced fraud detection methods. Our analysis reveals that while the LightGBM algorithm generally yields higher predictive accuracy, the differences between the calculated AUCs of the two methods are not statistically significant. This underscores the importance of using inferential techniques to validate model performance differences in fraud detection.

Article number: 4
Full-Text [PDF 600 kb]   (55 Downloads)    
Type of Study: Original Research - Empirical | Subject: Economics
Received: 7 Jan 2025 | Accepted: 4 Feb 2025 | Published: 18 Feb 2025

References
1. Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017, October). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE. [DOI:10.1109/ICCNI.2017.8123782]
2. Bahnsen, A. C., Aouada, D., Stojanovic, A., & Ottersten, B. (2016). Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134-142. [DOI:10.1016/j.eswa.2015.12.030]
3. Barker, K. J., D'Amato, J., & Sheridon, P. (2008). Credit card fraud: awareness and prevention. Journal of Financial Crime, 15(4), 398-410. doi:10.1108/13590790810907236 [DOI:10.1108/13590790810907236]
4. Chaudhary, K., Yadav, J., & Mallick, B. (2012). A review of fraud detection techniques: Credit card. International Journal of Computer Applications, 45(1), 39-44.
5. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. [DOI:10.1145/2939672.2939785]
6. Clarke, Bertrand, Ernest Fokoue, and Hao Helen Zhang. (2009). Principles and Theory for Data Mining and Machine Learning. Springer New York, NY. https://doi.org/10.1007/978-0-387-98135-2 [DOI:https://doi.org/10.1007/978-0-387-98135-2.]
7. Dai, S. (2022). Research on Detecting Credit Card Fraud Through Machine Learning Methods. In 2022 2nd International Conference on Business Administration and Data Science (BADS 2022) (pp. 1030-1037). Atlantis Press. [DOI:10.2991/978-94-6463-102-9_107]
8. Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference on artificial intelligence (Vol. 17, No. 1, pp. 973-978). Lawrence Erlbaum Associates Ltd.
9. European Central Bank (2021). Seventh report on card fraud. [online]. Available at: https://www.ecb.europa.eu/pub/cardfraud/html/ecb.cardfraudreport202110~cac4c418e8.en.html [Accessed 6 Jan. 2023].
10. Fawcett, T. (2006a). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861-74. [DOI:10.1016/j.patrec.2005.10.010]
11. Fawcett, T. (2006b). ROC graphs with instance-varying costs. Pattern Recognition Letters, 27(8), 882-891. [DOI:10.1016/j.patrec.2005.10.012]
12. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics, 1189-1232. [DOI:10.1214/aos/1013203451]
13. Greene, W. H. (2000). Econometric analysis [5th edition]. International edition, New Jersey: Prentice Hall.
14. Greene, W. H., & Hensher, D. A. (2010). Modeling ordered choices: A primer. Cambridge University Press. [DOI:10.1017/CBO9780511845062]
15. Hossain, M. N., Hassan, M. M., & Monir, R. J. (2022). Analyzing the Classification Accuracy of Deep Learning and Machine Learning for Credit Card Fraud Detection. Asian Journal for Convergence in Technology (AJCT) ISSN-2350-1146, 8(3), 31-36. [DOI:10.33130/AJCT.2022v08i03.006]
16. Legal Dictionary (2023). Fraud - Definition, Meaning, Types, Examples of fraudulent activity. [online] Available at: https://legaldictionary.net/fraud/ [Accessed 6 Jan. 2023]
17. Li, J., & Fine, J. P. (2010). Weighted area under the receiver operating characteristic curve and its application to gene selection. Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(4), 673-692. [DOI:10.1111/j.1467-9876.2010.00713.x] [PMID] []
18. Microsoft Corporation (2023). LightGBM. Retrived from: https://lightgbm.readthedocs.io/en/latest/ (at 1 Jan 2023).
19. Mojab, R., Heidari, H., & Ebrahimi, S. (2022). Design and Determination of Customer Ranking Model for the Export Development Bank. Tehran: Monetary and Banking Research Institute.
20. Qi, R. (2020). Real-world Credit Card Fraud Detection with Rich Features and Advanced Classification Methods [MSc Dissertation]. School of Computer Science and Informatics. Cardiff University.
21. Shao, J. (1993). Linear model selection by cross‑validation. Journal of the American Statistical Association, 88(422), 486-494. [DOI:10.1080/01621459.1993.10476408]
22. Shao, J. (1997). An asymptotic theory for linear model selection. Statistica Sinica, 7(2), 221-242.
23. Shaparak (2022). Shaparak Economic Report. Tehran: Shaparak Electronic Payment Network Company. Online access: https://shaparak.ir/, Access date: 01/01/2023.
24. Shen, A., Tong, R., & Deng, Y. (2007, June). Application of classification models on credit card fraud detection. In 2007 International conference on service systems and service management (pp. 1-4). IEEE. [DOI:10.1109/ICSSSM.2007.4280163]
25. Shi, Y., Li, J., & Li, Z. (2018). Gradient boosting with piece-wise linear regression trees. arXiv preprint arXiv:1802.05640. [DOI:10.24963/ijcai.2019/476]
26. Stone, M. (1976). An asymptotic equivalence of choice of model by cross‑validation and Akaike's criterion. Journal of the Royal Statistical Society: Series B (Methodological), 38(2), 276-278. [DOI:10.1111/j.2517-6161.1976.tb00932.x]
27. Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., & Anderla, A. (2019, March). Credit card fraud detection-machine learning methods. In 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-5). IEEE. [DOI:10.1109/INFOTEH.2019.8717766]
28. Vesta (2023). https://www.kaggle.com/c/ieee-fraud-detection/discussion/101203#589276 (Access date: 1/1/2023).
29. VISA (2023) Payment Security in Multiple Layers (online). Accessed at: 1/9/2023 (https://usa.visa.com/content/dam/VCOM/Media%20Kits/PDF/PaymentSecurity_Infographic.pdf)
30. Zhang, X., Han, Y., Xu, W., & Wang, Q. (2021). HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Information Sciences, 557, 302-316. [DOI:10.1016/j.ins.2019.05.023]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Journal of Money And Economy

Designed & Developed by : Yektaweb